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Overview
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• Poor conductivity of current 
composite electrolytes (10-6 S/cm 
to 10-4 S/cm)

• Low mechanical strength of 
composite electrolytes

• Low stability during operation

• Project Start Date: Oct. 1, 2016
• Project End Date:   Sept. 30, 2019
• Percent complete: 83%  till 

04/12/2019. We will complete 
100% by Sept 30, 2019

Interactions/collaborations:
North Carolina State University

Project lead:
West Virginia University

BarriersTimeline

• Total project funding
– DOE share:$1,244,012
– Contractor share: $156,181

• Funding received in FY 2018: : 
$463,711

• Funding for FY 2019: $456,762

Budget



Overall objectives
Develop the solid-state electrolytes by integrating a highly-conductive inorganic
nanofibrous network in a conductive polymer matrix for both lithium metal and
lithium-sulfur batteries.

Objectives of this period (04/01/2018– 03/31/2019)
- Construct and test the Li metal/composite electrolyte/Li metal symmetric cells;
- Construct and test the Li metal/composite electrolyte/cathode full cells;
- Optimize the ceramic-polymer composite electrolytes.

Impact
The DOE funding will allow the research team to develop solid-state inorganic
nanofiber-polymer composite electrolytes that will not only provide higher ionic
conductivity, improved mechanical strength and better stability than the PEO-based
polymer electrolyte, but also exhibit better mechanical integrity, easier incorporation
and better compatibility with the lithium metal anode than the planar ceramic
membrane counterparts. The proposed inorganic nanofiber-polymer composite
electrolytes will enable the practical use of high energy-density, high power-density
lithium metal batteries and lithium-sulfur batteries.

Relevance
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Milestones
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Milestones in Year 1-(10/01/2016– 9/31/2017)
For polymer matrix:
• Three polymer matrices have been successfully synthesized, including block copolymer , cross-linked block

copolymer, and salt-added cross-linked polymer
• The polyethylene oxide (PEO) cross-linked polymer exhibits an ionic conductivity of 2.40×10-4 S/cm at room

temperature
• The plastic crystal-added solid polymer electrolytes exhibits ionic conductivity of 8.3×10-4 S/cm (in Yr3)
For inorganic nanofibers:
• Li7La3Zr2O12 (LLZO) nanofibers and Li0.33La0.557TiO3 (LLTO) nanofibers have been developed.
• 0.5% Al-doped Li0.33La0.56Ti0.995Al0.005O3 (LLATO) nanofibers exhibits ionic conductivity of 1.08×10-3 S/cm.

Milestones in Year 2-(10/01/2017– 10/31/2018)
For composite electrolyte:
• A composite electrolyte consisting of silane-grafted Li6.28La3Al0.24Zr2O12 (s@LLAZO) nanofibers and poly(ethylene

glycol) diacrylate (PEGDA) monomer has been developed, showing an ionic conductivity of 4.9×10-4 S/cm.
• A composite electrolyte consisting of Li3PO4-modified LLATO nanofibers and poly (vinylidene fluoride-co-

hexafluoropropylene) (PVDF-HFP) has been developed, showing an ionic conductivity of 5.1×10-4 S/cm.

Milestones in Year-3 (10/01/2018– Present)
Half cells  and full cells:
• We have constructed and tested the batteries with silane-LLAZO incorporated cross-linked polymer composite as

electrolyte, Li metal anode and LiFePO4 (LFP) as cathode.
• We have constructed and tested the batteries with Li3PO4-coated LLATO/PVDF-HFP composite as electrolyte, Li

metal anode and LiFePO4 (LFP) as cathode.
• We have constructed and tested the batteries with flexible carbon nanofiber (CNF)/S-PEO/LLTO bilayer as cathode-

electrolyte bilayer structure for room-temperature all-solid-state lithium-sulfur batteries.



Approach

• Provide continuous Li+ transport channels via nanofiber
network

• Inhibit crystallization of amorphous polymer electrolyte.
• Facilitate lithium salt dissociation and ion transport through

the polymer electrolyte

• In-situ polymerization
• Design linker to couple the nanofibers to the polymer matrix
• Design deliberately to suppress the formation of lithium dendrites
• Measure the mechanical and electrochemical properties of

composites
• Optimize the nanofiber-polymer composites

Develop the block copolymers or cross-linked polymers that 
have higher ionic conductivity than traditional polyethylene 
oxide (PEO) polymers.

Approach identified to
optimize ion-conducting
polymers and inorganic
nanofibers.

Go/
No-Go

• Design and engineer the polymer matrix

• Design and engineer the inorganic nanofibers

• Enhance the synergistic effect of integrated inorganic fiber-
polymer composites

Go/
No-Go

Approach identified to 
optimize development 
composite electrolytes.
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Approach

Polymer matrix:
• Compared with the complicate synthesis procedures reported before, such as ring opening polymerization, our 

cross-linked acrylate-based PEO polymers are fabricated through easy UV cross-linking process. 
• Compared with the crystalline PEO structure, ours has fully amorphous PEO structure.
• Compared with previous double cross-linkers with high Tg (-20 °C), our polymer is plasticized with PEG,  showing 

low glass transition temperature Tg (-56.5 °C).
• Compared with the low ionic conductivity of the previous PEO based polymers(10-9-10 -6 S/cm), ours has higher 

ionic conductivity, for example the salt-added cross-linked polymer can reach an ionic conductivity of 2.4×10-4 

S/cm.

Inorganic nanofibers:
• Hydrogen-treatment is performed to create oxygen vacancies in Li-conducting metal oxides, showing improved ionic 

conductivity 
• Li-conducting metal oxides are doped with anions (nitrogen) while cation doping is reported in previous studies. 

Nitrogen doping can create the stable oxygen vacancy in the metal oxides.

Ceramic-polymer composite electrolyte:
• Composite electrolytes are prepared with in-situ polymerization on the ceramic nanofiber network.
• Grating agent is introduced at the ceramic/polymer interface in the composite. 
• The ceramic nanofibers are surface-modified with a high ionic conductivity buffer layer, which is located at the 

ceramic/polymer interface in the composite.

Full-cell batteries:
• All-solid-state Li-ion batteries are developed, which greatly improves the safety during operation.
• Use of solid-state electrolyte suppresses the dendrite formation.
• All-solid-state Li-ion batteries show excellent cycle-stability, including high capacity retention and high columbic 

efficiency 

Innovation
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Technical Accomplishments and Progress

Polymer matrix:
• Developed the plastic crystal-added solid polymer electrolytes
• Optimized the cross-linked PEGDA-LisTFSI polymer electrolyte

Ceramic-polymer composite electrolyte:
• Optimized the silane-LLAZO-cross-linked polymer composite electrolyte
• Optimized the lithium phosphate buffer layer the LLATO/polymer composite 

Coin-cell batteries:
• Tested the cycling performance, Coulombic efficiency and charge/discharge curves 

of the Li|s@LLAZO(6h)-60PEGDA|LFP battery
• Tested the cycling performance, Coulombic efficiency and charge/discharge curves 

of the Li| PVDF-HFP/LiTFSI/LLATO/Li3PO4|LFP battery
• Tested the cycling performance, Coulombic efficiency and charge/discharge curves 

of the CNF/S-PEO/LLTO bilayer framework based Li –S battery

Work done in Year 3 (04/01/2018 ~ 03/31/2019):
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Polymer Matrix
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Current Progress in:

 Plastic crystal-added solid polymer electrolytes
 Cross-linked PEGDA-LisTFSI polymer electrolyte
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A: Block co-polymer formation
B: Cross-linking
C: Combination of block co-polymer formation and cross-linking
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Li+

Highly Li+-Conductive nanofiber

Polyethylene Oxide Chain

Highly Li+-Conductive Polymer Chain

Development of new Li ion-conducting polymers
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Polymer 1:

Plastic crystal-added solid polymer electrolytes
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 SN/LiTFSI

Succinonitrile

Solid electrolyte (SN/LiTFSI)

• [SN]/[Li+] of 10:1

• High ionic conductivity of 2.1×10-3 S cm-1

Problems (when polymer is not present)

× No self-standing film 

× Extremely plastic 

× Susceptible to deformation under external 

stress

Plastic crystals 
• Increase structure disorder 

• Enhance diffusivity in polymer 

electrolytes

Succinonitrile (SN)

• Plastic crystals

• Nitrile groups (-C≡N) comprise 

good solvation capability

• Strong interaction with Li
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Polymer 1:

Plastic crystal-added solid polymer electrolytes

Robust and mechanically strong polymer 

framework 

• PEGDA+PETA (50:50, wt.%)

• High modulus, 44.65 MPa

Samples SN content  
(%) 

Ionic Conductivity (S/cm) 
(at 25 ˚C) 

Young’s modulus 
(MPa) 

PETA/PEGDA-SN50 50 3.9×10-5 - 

PETA/PEGDA-SN60 60 9.7×10-5 36.7 

PETA/PEGDA-SN70 70 3.4×10-4 20.1 

PETA/PEGDA-SN80 80 8.3×10-4 7.3 
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Polymer 2:

Cross-linked PEGDA-LisTFSI polymer electrolyte

• Single-ion conducting
• High mechanical strength

• Lithium blocks have high rigidity

• Synthesis procedure:

4-styrenesulfnny(trifluoromethylsulfony)imde (LisTFSI) 
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Polymer 2:

Cross-linked PEGDA-LisTFSI polymer electrolyte
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High ionic conductivity after plasticized with propylene carbonate (PC)
• 50 wt.% PC added based on the weight of PEGDA-LisTFSI

• [EO]:[Li+] = 24:1, highest ionic conductivity (1.5×10-4 S cm-1)
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Polymer 2:

Cross-linked PEGDA-LisTFSI polymer electrolyte

Single-ion conductor

• tLi+ = 0.82

Electrochemical window

• 1.1 V ~ 4.7 V



Nanofiber-Polymer 
Composite Electrolytes
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 Silane-LLAZO incorporated cross-linked polymer composite electrolyte

 Li3PO4 coated Al-doped LLTO  solid electrolyte for all-solid
-state lithium batteries (PVDF-HFP/LiTFSI/LLATO/Li3PO4) 

Current Progress in:
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• Decrease interfacial resistance 

between filler and polymer

• Lower polymer content used in the 

solid electrolyte (40 wt.%)

• Control the fabrication composite 

framework (percolated network)

• High ionic conductivity

• High lithium transference number

Synthesis process 
• Silane coating (s@LLAZO nanofibers)

– 2.5 wt% 3-(trimethoxysilyl)propyl methacrylate (Silane) in ethanol/H2O (95:5 volume ratio) 
for 6h

• Polymerization (composite solid electrolyte)
– 40 wt% poly(ethylene glycol) dimethyl acrylate (PEGDA) + LiTFSI
– 60 wt% s@LLAZO nanofibers

Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

Roles of silane grating agent:
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Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

• Silane is successfully grafted onto the surface of LLAZO nanofibers
– Si-O groups, C=C groups, acrylate groups appear in FTIR

• Coating layer thickness increases along with the increased treatment time

• XPS surface functional groups (Si-O groups)
– O 1s at 531.5 eV, Si 2p at 102.5 eV 

Structural Characterization
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Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

Different Li+ conduction preference (Ea)
• Polymer matrix (LLAZO-PEGDA)

High activation energy 
• Percolated LLAZO nanofiber 

(s@LLAZO-PEGDA)
Low activation energy

s@LLAZO(6h)-PEGDA
• Highest ionic conductivity
• Optimum silane coating

Electrochemical Characterization 
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Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

Fit well with percolation model
• σ Increases continuously
• eliminate agglomeration effect

Silane-coated non-Li+ conductor
• s@TiO2(6h), s@SiO2(6h)
• σ greatly decreases after 10wt.%

s@LLAZO filler provides significant 
contribution to Li+ ion conduction 

Electrochemical Characterization 
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Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

• LLAZO-PEGDA composite solid electrolyte 
- Severe aggregation of nanofibers (discontinued Li+ conduction)

• s@LLAZO-PEGDA composite solid electrolytes
- Well percolated LLAZO network (continuous Li+ conduction)

Morphologies of composite solid electrolytes



20

Composite solid electrolyte 1:
Silane-LLAZO incorporated cross-linked polymer composite electrolyte

0 5 10 15 20 25
0

1

2

3

4

5
 s@LLAZO(24h)-60PEGDA
 s@LLAZO(12h)-60PEGDA
 s@LLAZO(6h)-60PEGDA
 s@LLAZO(3h)-60PEGDA
 LLAZO-60PEGDA
 PEGDA

 

 

Mechanical properties



• The electrolyte shows good flexibility 
which can be used to construct flexible 
solid-state lithium batteries

• The thickness of composite electrolyte is 
about ~80 μm

• A thin lithium phosphate film has 
covered after the surface modification as 
shown in Figure e and f, forming a 
LLATO core/Li3PO4 shell structure

• Interface between polymer matrix and 
nanofibers
• PVDF-HFP/LiTFSI/LLATO: sharp
• PVDF-HFP/LiTFSI/LLATO/Li3PO4: 

gradually

21

Morphology of composite electrolyte

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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Ionic conductivity of composite electrolyte

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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Li+ ion transference number 
• Chronoamperometry profiles in Li/SEs/Li with an applied DC voltage of 10 mV
• Higher nanofibers amount, faster Li+ ion conduction

Li+ ion transference number 

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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PVDF-HFP alone shows characteristic 
peaks at 18, 20, 27, 40o

Adding lithium salt LiTFSI:
• weakened the XRD diffraction 

peaks of PVDF-HFP

Adding ceramic nanofibers
• further weakened the diffraction 

peaks of PVDF-HFP 

More amorphous regions were formed in the PVDF-HFP polymer matrix with 
increasing the content of LLATO nanofibers

10 20 30 40 50 60 70 80

PVDF-HFP

PVDF-HFP+LiTFSI

PVDF-HFP+LiTFSI+10%

PVDF-HFP+LiTFSI+20%

PVDF-HFP+LiTFSI+30%

PVDF-HFP+LiTFSI+30%+Li3PO4

In
te
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ity

(a
. u

.)

2θ(Degree)

XRD patterns of composite electrolyte

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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Adding lithium salt LiTFSI:

 deprotonation of CH2 

o peaks at 795 cm-1, 873 cm-1 and 

1426 cm-1 decreased

 weakened α phase of PVDF-HFP

 dehydrofluorination of PVDF-HFP 

chains

o CF2 stretching vibration mode at 

1200 cm-1 of PVDF-HFP decreased 

dramatically
400 800 1200 1600

LiTFSI

1426 cm-1

1200 cm-1
873 cm-1795 cm-1

PVDF-HFP+LiTFSI+30%+Li3PO4

PVDF-HFP+LiTFSI+20%

PVDF-HFP+LiTFSI+30%

PVDF-HFP+LiTFSI+10%

PVDF-HFP+LiTFSI

PVDF-HFP
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.)

Raman shift(cm-1)

Raman spectra of composite electrolyte

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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Adding ceramic nanofibers:
 deprotonation of CH2 

CH2 stretching mode peak at 2980 cm-1 almost disappeared
 dehydrofluorination of PVDF chains

A new peak at 1510 cm-1, the C=C stretching modes of polyene

FTIR spectra of composite electrolyte

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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Li+ ion transport pathway analysis with 6Li ssNMR:

Before  vs. After 6Li → 7Li 
replacement:
1). PVDF-HFP/LiTFSI: 
LiTFSI shift: -0.96 ppm to -0.16 ppm,

2). PVDF HFP/LiTFSI/LLATO: 
LLATO shift: -0.30,  and 0.13ppm shifted 
to -0.33,  and 0.19 ppm , and increased 
significantly after 6Li → 7Li 
replacement. 

The majority of Li ions pass through the 
percolated network formed by LLATO 
nanofibers and a small portion transport 
via LiTFSI in PVDF-HFP and the 
interface. 

3). PVDF-HFP/LiTFSI/LLATO/Li3PO4: 
LLATO shift: -0.30,  and 0.13ppm shifted 
to -0.34,  and 0.12ppm, and increased 
significantly after 6Li → 7Li 
replacement. 
Li3PO4:  0.33 ppm to 0.42 ppm, 
increased dramatically after the 6Li → 
7Li replacement.

Reference:
LiTFSI in the PVDF-HFP/LiTFSI :-0.96 ppm. 
Pure LLATO : -0.81, -0.25, 0.13, 1.8, and 2.4 
ppm. 
pure Li3PO4: 0.33 ppm, 0 ppm

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:
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spectral simulation, assignments, and quantification results

PVDF-HFP/LiTFSI/LLATO:

Li+ from LLATO nanofibers:  87.9 mol %
Li+ from LiTFSI:                     5.4 mol % 
Li+ from the interface:             6.7 mol % 

PVDF-HFP/LiTFSI/LLATO/Li3PO4: 

Li+ from LLATO nanofibers:      60 mol%
Li+ from LiTFSI:                         3.7 mol % 
Li+ from the interface:                 11.5 mol % 
Li+ from interfacial Li3PO4:         24.8 mol %

The modification of the Li3PO4 buffer layer improved the Li+ ion transport at the interface.

Li3PO4-coated LLATO/PVDF-HFP/LiTFSI composite
Composite solid electrolyte 2:

Li+ ion transport pathway analysis with 6Li ssNMR:



COIN-CELL BATTERY

Current Progress in:
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Excellent mechanical properties
• Bendable, rolled up without crack

Long-term lithium cycling stability
• Low overpotentials

• 35 mV @ 0.05 mA cm-2

• 69 mV @ 0.1mA cm-2

• 159 mV @ 0.2 mA cm-2

• Smooth Li striping/plating
• Over 500 hours

Stable interface between Li metal and 
s@LLAZO-PEGDA CSE

Half Cells

Silane-LLAZO incorporated cross-linked polymer composite electrolyte
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Li/composite electrolyte/LFP Full Cells: Cycling performance & rate capacity:

Silane-LLAZO incorporated cross-linked polymer composite electrolyte
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PVDF-HFP/LiTFSI:
 failed  after 25 cycles
 polarization voltages of ~1 V 

were observed at 0.5 mA/cm2

for 30 min at room temperature

PVDF-HFP/LiTFSI/LLATO:
 polarization voltages of ~100 

mV were observed at 0.5 
mA/cm2 for 30 min at room 
temperature

Half Cells

Li3PO4-coated LLATO/PVDF-HFP composite

PVDF-HFP/LiTFSI/LLATO/Li3PO4:

• Charge/discharge at constant 
current densities

• Small polarization voltages of <50 
mV were observed at 0.5 mA/cm2

for 30 min at room temperature 
after 850  h of cycling 



• Synergy of polymer matrix and nanofibers
- High Li+ conductivity
- Good mechanical properties

Li/composite electrolyte/LFP Full Cells: Cycling performance & rate capacity:

Li3PO4-coated LLATO/PVDF-HFP composite

33

• Good rate capability:  0.1C (158 mAh/g), 0.2C (147 mAh/g), 0.5C (133 mAh/g), 1C 
(98 mAh/g), 2C (76 mAh/g).



Fabrication and characterization of CNF/S-PEO/LLTO bilayer structure:

Flexible CNF/S-PEO/LLTO bilayer structure bilayer framework

34

• The bilayer structure was prepared 
by direct casting PEO/LLTO 
solution onto the carbon nanofiber 
(CNF)/S cathode

• The CNF/S electrode was prepared 
by dropping a mixed liquid solution 
of S/carbon disulfide (S/CS2) onto 
the CNF mat, ensuring the intimate 
contact between the active material 
(S) and the current collector (CNF 
mat).

(a) SEM images of  CNF/S, and (b) 
PEO/LLTO solid composite electrolyte. 

(c) High resolution SEM image of 
PEO/LLTO solid composite electrolyte 
with clearly seen LLTO structure. 

(d) (e) Cross-sectional SEM image of 
CNF/S-PEO/LLTO bilayer framework 

(f) Stress-strain curves of CNF, CNF-PEO 
and CNF-PEO/LLTO 

(g) EDS mapping of the cross-section of 
CNF/S-PEO/LLTO bilayer framework (e).



Stable cycling performance @1C
115 mAh g−1 up to 250 cycles

89% capacity retention
99% Coulombic efficiency
Remarkable rate capability

113 mAh g−1 @ 2C
78 mAh g−1 @ 5C

Working up to 10C (44 mAh g−1)
Good reversibility of the redox reactionsStable cycling performance @1C

115 mAh g−1 up to 250 cycles

89% capacity retention

99% Coulombic efficiency

Remarkable rate capability
113 mAh g−1 @ 2C

78 mAh g−1 @ 5C

Working up to 10C (44 mAh g−1)

Good reversibility of the redox reactions
Superior electrochemical properties of CSE

Superior electrochemical properties of CSE

(b)

Half Cell & Li-S Full Cells:
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• Li/PEO/Li and Li/ (PEO/LLTO)/Li 
cells tested at a current density of 
0.5 mA cm-2

• The Li/PEO/Li :large voltage of 
around 450 mV in initial cycles. 

• Li/(PEO/LLTO)/Li cell: much smaller 
voltage of around 200 mV in initial 
cycles.

• Stable cycling performance @0.05C
– 415 mAh g−1 up to 50 cycles

– Coulombic efficiency remained over 
98% after 8 cycles and over 99% after 
50 cycles.

• Remarkable rate capability
– 384 mAh g−1 @ 0.05C

– 358 mAh g−1 @ 0.1C

– 262 mAh g−1 @ 0.2C

Flexible CNF/S-PEO/LLTO bilayer structure bilayer framework

Half Cell 

Li-S Full Cell 



Collaboration and Coordination with Other Institutions
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U.S. Department of Energy 
-Sponsorship, steering

North Carolina State University - Key partner
Polymer matrix design, synthesis and characterization; 
linker development; and full cell construction and testing

West Virginia University - Project lead
Management and coordination; inorganic nanofiber design, 
synthesis and characterization; composite electrolyte 
development; and battery construction and testing

Quzhou University
Theory calculations on the cationic and anionic doping of 
perovskite materials



Remaining Challenges and Barriers
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• A grafting agent with high ionic conductivity is expected to promote the Li ion transport 
between the ceramic nanofibers and the polymer matrix. However, such an organic linker 
is rare.

• It is essential to optimize the interface between the electrolyte and the electrode, decrease 
interface resistance, which has significant effect on the performance of  full-cell batteries.

• It is challenging to improve the life time and capacity of battery performance. 



Proposed Future Research
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Composite electrolytes:
• Search for grating agents with high ionic conductivity
• Modify the ceramic nanofiber surface to create a buffer layer at the ceramic-polymer 

interface
• Optimize the ionic conductivity of the composite electrolyte.

Batteries:
• Optimize the composition and structure of the full cells
• Optimize the interface between electrolyte and electrode

Any proposed future work is subject to change based on funding levels 
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For polymer matrix:
• Two major polymer matrices have been successfully synthesized
• The Plastic crystal-added solid polymer electrolyte exhibits an ionic conductivity of 8.3×10-4

S/cm at room temperature

For Composite electrolyte:
• The composite solid electrolyte, which consists of the silane-grafted

Li6.28La3Al0.24Zr2O12 (s@LLAZO) nanofibers and the poly(ethylene glycol) diacrylate
(PEGDA) has been developed, shows an ionic conductivity of 4.9×10-4 S/cm and a
stable electrochemical window.

• The composite electrolyte, which consists of Li3PO4-modified LLATO nanofibers and
PVDF-HFP, exhibits ionic conductivity of 5.1×10-4 S/cm, as well as stable and wide
electrochemical window. The Li+ ion transport pathways have been investigated.

For Full cells:
• Li|s@LLAZO(6h)-60PEGDA|LFP cell: Discharge capacities of 158, 147, 135, 113,

and 78 mAh g-1 were obtained at rates of 0.2, 0.5, 1, 2, and 5 C, respectively. Even at a
high current density of 10 C, the cell delivers a capacity of 44 mAh g-1, showing stable
cycling performance for 200 cycles.

• Li|PVDF-HFP/LiTFSI/LLATO/Li3PO4|LFP cell: Discharge capacities of 158, 147
133, 98, 76 mAh g-1 were obtained at rates of 0.1, 0.2, 0.5, 1, and 2C, respectively.

• Flexible CNF/S-PEO/LLTO bilayer Li-S batteries: Discharge capacities of 384, 358,
262 mAh g-1 were obtained at rates of 0.05, 0.1, 0.2C, respectively, showing stable
cycling performance for 50 cycles.

Summary
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